Chicago Seminar Offers Municipal Officials Cost-Effective Solutions for Water and Sewer Pipe Infrastructure

Dallas, TX October 22 – In Chicago last week water and wastewater utility engineers and consulting engineers from five states – Illinois, Michigan, Missouri, Nevada and Wisconsin – participated in an educational seminar on the design and installation of corrosion-proof PVC piping. Participants were provided with technical and financial information that helps utilities reduce operations, maintenance and capital costs through asset management, life cycle costing and open pipe materials procurement. Attendees also learned about the science of buried pipes that makes PVC pipe as strong as traditional pipe materials, but less expensive, easier to install and with greater longevity and performance.

“The seminar provided updated information on pipe specifications that will help our municipality reduce costs and increase the quality of our utility infrastructure,” said Steven Sage, Senior Engineer, City of Janesville, WI.

The repair and replacement of corroding iron piping networks is driving up water and sewer rates across the country and undermining the capacity of municipalities to address much needed capital investments in underground infrastructure. Broader use of PVC pipe, which can be up to 30-70 percent less expensive than ductile iron pipe, is critical if municipalities are to reduce budget rate shocks and access additional funding from current budgets. Nationally, PVC pipe could save municipalities hundreds of billions of dollars in their distribution system capital budgets and water main/collection system replacement programs and be part of an effective financial strategy to reduce double digit rate hikes and avoid excessive long-term debt.

“The PVC Pipe Association urges municipalities to join with utility officials that participated in this seminar and put an end to closed procurement policies that exclude corrosion-proof piping materials from being used in underground infrastructure. Iron piping is more expensive and does not meet the sustainable future needs of public water and sewer systems. It’s time for municipal officials to fully respect the fact that their sources of funding are from individuals, working hard and struggling to pay their bills in a challenging economy. This limited funding should be protected and allocated in a cost savings manner. Large capital plans without open procurement practices which consider various pipe materials waste taxpayer dollars,” said Executive Director Bruce Hollands.
Each year, more than 300,000 water main breaks occur throughout North America – or some 850 every day – mainly as a result of the continued use of corrosion-prone iron piping in the nation’s water systems. Corroded, leaking pipes are responsible for the loss of 2.6 trillion gallons of drinking water every year, or 17 percent of all water pumped in the U.S. Moreover, according to a congressional study, corrosion costs U.S. drinking water and wastewater systems over $50.7 billion annually.

“Taxpayer dollars invested in local infrastructure should be spent in an open and competitive manner so that all pipe technologies are considered. This will not only ensure that ratepayers get the best bang for the buck, but this process will drive innovation, resulting in more efficient, cost-effective, environmentally sustainable water systems,” commented Gregory M. Baird, President of the Water Finance Research Foundation (WFRF) and co-sponsor of the event.

Unfortunately, procurement practices are largely outdated at the municipal level and the solution for many local officials is a simple band-aid approach of repairing or replacing our water mains with the same outdated iron pipes that currently make up much of our underground water systems.

PVC pipe is a totally recyclable and extremely durable alternative to traditional piping materials. A review by Engineering News Record in 1999 found PVC pipe to be one of the top twenty engineering advancements in more than a century. An American Water Works Association Research Foundation study confirms the life expectancy of PVC pipe to be in excess of 110 years, and a European report determined its longevity at 170 years.

According to a recent study by Utah State University’s Buried Structures Laboratory, PVC pipe has the lowest overall failure rate when compared to cast iron, ductile iron, concrete, steel and asbestos cement pipes. Another finding includes corrosion as a major cause of water main breaks. Significantly, when comparing between older cast iron and newer ductile iron pipe, the study showed that thinner-walled ductile iron pipe is experiencing failures more rapidly.

PVC pipe’s ultra-smooth surface also reduces pumping costs and its leak-free joints eliminate water loss. But PVC pipe’s greatest attributes are perhaps its exceptional durability and corrosion-resistance – leading to better water conservation and lower replacement, maintenance and repair costs.

“Open competition, an American value, must be the operating principle upon which all government procurement takes place, especially in the water and wastewater sector which will require more than $1 trillion in investments over the next 20 years. This will drive innovation and keep infrastructure renewal more affordable. Seminar participants should be commended for exploring more cost-effective solutions for underground infrastructure that benefit ratepayers,” said Hollands.

The PVC Pipe Association www.uni-bell.org is a non-profit organization that serves the engineering, regulatory, public health and standardization communities.

The Water Finance Research Foundation www.waterfinancerf.org is a non-profit organization concerned about the growing water main break epidemic which focuses on water delivery and financial practices that are sustainable, efficient, and affordable.

-30-

PIPE PRODUCING MEMBERS

CertainTeed Saint-Gobain :: Diamond Plastics Corporation :: IPEX USA LLC :: JM Eagle :: National Pipe & Plastics, Inc.
North American Pipe Corporation :: Pipelife Jet Stream, Inc. :: Royal Building Products :: Sanderson Pipe Corporation